定義
將兩塊不同的金屬(如銅和鐵)靠在一起時,由于兩金屬中自由電子濃度的不同,使得電子從一金屬向另一金屬擴散轉(zhuǎn)移,電子轉(zhuǎn)移量與金屬所處的溫度有關(guān)。如果將兩塊金屬處于同一溫度,那么電子轉(zhuǎn)移會達到一種平衡,這種平衡使得兩金屬的接觸界面上產(chǎn)生一個電勢差,稱為接觸電勢。溫度不同,接觸電勢也不同,根據(jù)接觸電勢的大小,可以測量觸點所處的溫度,這種裝置稱為熱電偶。如果將兩個類似于熱電偶的金屬接觸面置于不同的溫度下,并用導(dǎo)線將它們連接起來形成閉合回路,那么,在導(dǎo)線中將會產(chǎn)生不間斷的電流,這就是最簡單的溫差發(fā)電。1
熱電效應(yīng)
定義
所謂的熱電效應(yīng),是當受熱物體中的電子(空穴),由高溫區(qū)往低溫區(qū)移動時,產(chǎn)生電流或電荷堆積的一種現(xiàn)象。而這個效應(yīng)的大小,則是用稱為thermopower(Q)的參數(shù)來測量,其定義為Q=E/-dT(E為因電荷堆積產(chǎn)生的電場,dT則是溫度梯度)。三個基本熱電效應(yīng):塞貝克(Seebeck)效應(yīng),珀爾貼(Peltier)效應(yīng),湯姆遜效應(yīng)。
塞貝克(Seebeck)效應(yīng)
塞貝克(Seeback)效應(yīng),又稱作第一熱電效應(yīng),它是指由于兩種不同電導(dǎo)體或半導(dǎo)體的溫度差異而引起兩種物質(zhì)間的電壓差的熱電現(xiàn)象。在兩種金屬A和B組成的回路中,如果使兩個接觸點的溫度不同,則在回路中將出現(xiàn)電流,稱為熱電流。 塞貝克效應(yīng)的實質(zhì)在于兩種金屬接觸時會產(chǎn)生接觸電勢差,該電勢差取決于金屬的電子逸出功和有效電子密度這兩個基本因素。 半導(dǎo)體的溫差電動勢較大,可用作溫差發(fā)電器。2
珀爾貼(Peltier)效應(yīng)
珀爾貼(Peltier)效應(yīng),又稱為第二熱電效應(yīng),是指當電流通過A 、B兩種金屬組成的接觸點時,除了因為電流流經(jīng)電路而產(chǎn)生的焦耳熱外,還會在接觸點產(chǎn)生吸熱或放熱的效應(yīng),它是塞貝克效應(yīng)的逆反應(yīng)。
由于焦耳熱與電流方向無關(guān),因此珀爾貼熱可以用反向兩次通電的方法測得。2
湯姆遜效應(yīng)
1856年,湯姆遜利用他所創(chuàng)立的熱力學(xué)原理對塞貝克效應(yīng)和帕爾帖效應(yīng)進行了全面分析,并將本來互不相干的塞貝克系數(shù)和帕爾帖系數(shù)之間建立了聯(lián)系。湯姆遜認為,在絕對零度時,帕爾帖系數(shù)與塞貝克系數(shù)之間存在簡單的倍數(shù)關(guān)系。在此基礎(chǔ)上,他又從理論上預(yù)言了一種新的溫差電效應(yīng),即當電流在溫度不均勻的導(dǎo)體中流過時,導(dǎo)體除產(chǎn)生不可逆的焦耳熱之外,還要吸收或放出一定的熱量(稱為湯姆孫熱)?;蛘叻催^來,當一根金屬棒的兩端溫度不同時,金屬棒兩端會形成電勢差。這一現(xiàn)象后叫湯姆遜效應(yīng)(Thomson effect),成為繼塞貝克效應(yīng)和帕爾帖效應(yīng)之后的第三個熱電效應(yīng)(thermoelectric effect)。
湯姆遜效應(yīng)是導(dǎo)體兩端有溫差時產(chǎn)生電勢的現(xiàn)象,帕爾帖效應(yīng)是帶電導(dǎo)體的兩端產(chǎn)生溫差(其中的一端產(chǎn)生熱量,另一端吸收熱量)的現(xiàn)象,兩者結(jié)合起來就構(gòu)成了塞貝克效應(yīng)。2
熱電堆
熱電堆是由多個熱電偶的串聯(lián)而成。
熱電堆的結(jié)構(gòu):輻射接收面分為若干塊,每塊接一個熱電偶,把它們串聯(lián)起來,就構(gòu)成熱電堆。按用途不同,實用的熱電堆可以制成細絲型和薄膜型,亦可制成多通道型和陣列型器件。1
熱電比
熱電比即熱電廠發(fā)熱量和發(fā)電量的比值。根據(jù)《關(guān)于發(fā)展熱電聯(lián)產(chǎn)的規(guī)定》,要求供熱式汽輪發(fā)電機組的蒸汽流既發(fā)電又供熱的常規(guī)熱電聯(lián)產(chǎn),應(yīng)符合下列指標:
A、 所有熱電聯(lián)產(chǎn)機組總熱效率年平均大于45%。熱效率=(供熱量+供電量X 3600千焦/千瓦時)/(燃料總消耗量X燃料單位低位熱值)X 100%。
B、 單機容量在5萬千瓦以下的熱電機組,其熱電比年平均應(yīng)大于100%;單機容量在5萬千瓦至20萬千瓦以下的熱電機組,其熱電比年平均應(yīng)大于50%;單機容量20萬千瓦及以上抽汽凝汽兩用供熱機組,采暖期熱電比應(yīng)大于50%。熱電比=供熱量/(供電量X 3600千焦/千瓦時)X 100%。
注:供熱量單位采用千焦,供電量單位采用千瓦時,燃料總消耗量單位采用千克,燃料單位低位熱值千焦/千克,這兩個條件是衡量熱電機組是否達標的必備條件。1
熱電性
當?shù)V物溫度變化時,在晶體的某些結(jié)晶方向產(chǎn)生電荷的性質(zhì)稱為熱電性。
礦物的熱電性主要存在于無對稱中心、具有極性軸的介電質(zhì)礦物晶體中。如電氣石、方硼石。
熱電性是指寶石礦物在外界溫度變化時,在晶體的某些方向產(chǎn)生電荷的性質(zhì)。熱電性最初發(fā)現(xiàn)于石英中。
熱釋電材料如鈦酸鉛、硫酸三甘肽具有材料表面在受熱情況下出現(xiàn)電荷的現(xiàn)象,這種現(xiàn)象是由于此類物質(zhì)的分子有自發(fā)極化作用形成電偶極子在物體表面吸附環(huán)境中的靜電荷達到中和,但溫度變化下其自發(fā)極化強度相應(yīng)改變從而在物體表面出現(xiàn)多余的電荷,我們稱材料的這種表現(xiàn)為熱釋電效應(yīng)。熱釋電效應(yīng)是熱電性的一個重要方面。1
熱電材料
熱電材料是一種能將熱能和電能相互轉(zhuǎn)換的功能材料,1823年發(fā)現(xiàn)的塞貝克效應(yīng)和1834年發(fā)現(xiàn)的帕爾帖效應(yīng)為熱電能量轉(zhuǎn)換器和熱電制冷的應(yīng)用提供了理論依據(jù)。如隨著空間探索興趣的增加、醫(yī)用物理學(xué)的進展以及在地球難于日益增加的資源考察與探索活動,需要開發(fā)一類能夠自身供能且無需照看的電源系統(tǒng),熱電發(fā)電對這些應(yīng)用尤其合適。隨著全球工業(yè)化進程的加快, 世界能源短缺和枯竭已經(jīng)成為每個國家不容忽視的問題, 嚴重制約著社會長期穩(wěn)定發(fā)展。研究和開發(fā)新能源已經(jīng)成為全球能源發(fā)展的趨勢。生活中有許多耗費能源所生成、卻又被廢棄的熱能,例如:汽車尾氣、工廠鍋爐排放的氣體等。如果能將這些熱能善加利用,即可成為再次使用的能源;電能是最廣泛使用的能源形式,但是發(fā)電的主要形式還是化石能源,這些能源的使用在給我們帶來便利的同時,也帶來了全球關(guān)注的環(huán)境問題;現(xiàn)代制冷技術(shù)給人們生活帶來了很多便利,但是氟里昂制冷劑所帶來的環(huán)境問題卻不容忽視。熱電材料以其獨特的性能成為一種很有發(fā)展前途的功能材料, 它的應(yīng)用包括溫差發(fā)電和溫差制冷。什么是熱電材料呢?熱電材料是一種利用固體內(nèi)部載流子運動實現(xiàn)熱能和電能直接相互轉(zhuǎn)換的功能材料。人們對熱電材料的認識具有悠久的歷史。1823年,德國人塞貝克(Seebeck)發(fā)現(xiàn)了材料兩端的溫差可以產(chǎn)生電壓,也就是通常所說的溫差電現(xiàn)象。1834年,法國鐘表匠珀耳帖(Peltier)在法國《物理學(xué)和化學(xué)年鑒》上發(fā)表了他在兩種不同導(dǎo)體的邊界附近(當有電流流過時)所觀察到的溫差反常的論文。這兩個現(xiàn)象表明了熱可以致電,而同時電反過來也能轉(zhuǎn)變成熱或者用來制冷,這兩個現(xiàn)象分別被命名為塞貝克效應(yīng)和珀耳帖效應(yīng)。它們?yōu)闊犭娔芰哭D(zhuǎn)換器和熱電制冷的應(yīng)用提供了理論依據(jù)。在環(huán)境污染和能源危機日益嚴重的今天,進行新型熱電材料的研究具有很強的現(xiàn)實意義。1