內(nèi)容
將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條角三分線相交得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。
證明方法
該定理以其美妙和證明困難著稱,到目前為止,已經(jīng)有很多證明方法。
證法一
設(shè)△ABC中,AF、 AE、BF、BD、CD、CE為各角的三等分線,三邊長(zhǎng)為a,b,c,三內(nèi)角為3α,3β,3γ,則α+β+γ=60°。
在△ABF中,由正弦定理,得AF=csinβ/sin(α+β)。
不失一般性,△ABC外接圓直徑為1,則由正弦定理,知c=sin3γ,所以AF=
(sin3γ*sinβ)/sin(60°-γ)=[sinβ*sinγ(3-4sin2γ)]/[1/2(√3cosγ-sinγ)]=
2sinβsinγ(√3cosγ+sinγ)=4sinβsinγsin(60°+γ).
同理,AE=4sinβsinγsin(60°+β)
∴AF:AE=[4sinβsinγsin(60°+γ)]:[4sinβsinγsin(60°+β)]=sin(60°+γ):sin(60°+β)=sin∠AEF:sin∠AFE
∴∠AEF=60°+γ,∠AFE=60°+β.同理得,CED=60°+α
FED=180°-CED-(AEF-α-γ)=180°-60°-α-60°+α=60
∴△FED為正三角形。1
證法二
∵AE:AC=sinγ:sin(α+γ),
AF:AB=sinβ:sin(α+β) ,
AB:AC=sin3γ:sin3β,
∴AE:AF=(ACsinγ/sin(α+γ)):(ABsinβ/sin(α+β)),
而sin3γ:sin3β=(sinγsin(60°+γ)sin(60°-γ) ):(sinβ sin(60°+β) sin(60°-β) ),
sin(α+β)sin(60°-β)=sin(α+γ)sin(60°-γ),
∴AE:AF=sin(60°+β):sin(60°+γ),
∴在△AEF中,∠AEF=60°+γ,
同理∠CED=60°+α,
∴∠DEF=60°,
同理∠DFE=60°,
∴△DEF為正三角形。