簡(jiǎn)介
反三角函數(shù)(inverse trigonometric function)是一類初等函數(shù)。指三角函數(shù)的反函數(shù)。由于基本三角函數(shù)具有周期性,所以反三角函數(shù)是多值函數(shù)。這種多值的反三角函數(shù)包括:反正弦函數(shù)、反余弦函數(shù)、反正切函數(shù)、反余切函數(shù)、反正割函數(shù)、反余割函數(shù),分別記為Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。但是,在實(shí)函數(shù)中一般只研究單值函數(shù),只把定義在包含銳角的單調(diào)區(qū)間上的基本三角函數(shù)的反函數(shù),稱為反三角函數(shù),這是亦稱反圓函數(shù)。為了得到單值對(duì)應(yīng)的反三角函數(shù),人們把全體實(shí)數(shù)分成許多區(qū)間,使每個(gè)區(qū)間內(nèi)的每個(gè)有定義的 y 值都只能有惟一確定的 x 值與之對(duì)應(yīng)。為了使單值的反三角函數(shù)所確定區(qū)間具有代表性,常遵循如下條件:
1、為了保證函數(shù)與自變量之間的單值對(duì)應(yīng),確定的區(qū)間必須具有單調(diào)性;
2、函數(shù)在這個(gè)區(qū)間最好是連續(xù)的(這里之所以說最好,是因?yàn)榉凑詈头从喔詈瘮?shù)是尖端的);
3、為了使研究方便,常要求所選擇的區(qū)間包含0到π/2的角;
4、所確定的區(qū)間上的函數(shù)值域應(yīng)與整函數(shù)的定義域相同。這樣確定的反三角函數(shù)就是單值的,為了與上面多值的反三角函數(shù)相區(qū)別,在記法上常將Arc中的A改記為a,例如單值的反正弦函數(shù)記為arcsin x。1
分類為限制反三角函數(shù)為單值函數(shù),將反正弦函數(shù)的值y限在-π/2≤y≤π/2,將y作為反正弦函數(shù)的主值,記為y=arcsin x;相應(yīng)地,反余弦函數(shù)y=arccos x的主值限在0≤y≤π;反正切函數(shù)y=arctan x的主值限在-π/2