交錯(cuò)多項(xiàng)式(alternating polynomial)是對(duì)稱多項(xiàng)式概念的推廣,設(shè)f是自由代數(shù)Λ{X}中含n個(gè)變?cè)囊粋€(gè)多項(xiàng)式,t≤n為給定正整數(shù),若f的每個(gè)單項(xiàng)式中xi(1≤i≤t)出現(xiàn)且僅出現(xiàn)一次,稱f為t線性多項(xiàng)式。若對(duì)任意i,j,1≤i
交錯(cuò)多項(xiàng)式(alternating polynomial)是對(duì)稱多項(xiàng)式概念的推廣,設(shè)f是自由代數(shù)Λ{X}中含n個(gè)變?cè)囊粋€(gè)多項(xiàng)式,t≤n為給定正整數(shù),若f的每個(gè)單項(xiàng)式中xi(1≤i≤t)出現(xiàn)且僅出現(xiàn)一次,稱f為t線性多項(xiàng)式。若對(duì)任意i,j,1≤i